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Abstract: When navigating in a man-made environment they haven’t visited be-
fore—like an office building—humans employ behaviors such as reading signs
and asking others for directions. These behaviors help humans reach their des-
tinations efficiently by reducing the need to search through large areas. Existing
robot navigation systems lack the ability to execute such behaviors and are thus
highly inefficient at navigating within large environments. We present ReasonNav,
a modular navigation system which integrates these human-like navigation skills
by leveraging the reasoning capabilities of a vision-language model (VLM). We
design compact input and output abstractions based on navigation landmarks, al-
lowing the VLM to focus on language understanding and reasoning. We evaluate
ReasonNav on real and simulated navigation tasks and show that the agent suc-
cessfully employs higher-order reasoning to navigate efficiently in large, complex
buildings. Project website: https://reasonnav.github.io/.
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1 Introduction

Imagine that you are an office worker and are asked to deliver a report to Jane Doe’s office. What
steps would you take to complete this task? First, you might search in a directory to find out the
building and room number for Jane Doe’s office. Then, you might look for signs that indicate the
direction of that room. You can integrate the information you receive from each sign with the layout
of the scene you see around you to decide where to look next. Along the way, you might ask people
nearby for further clarifications.

Our civilization is built to be easy for humans to navigate within. There is an abundance of
knowledge-offering resources around us that we leverage to navigate the world efficiently. Direc-
tional signs are placed deliberately at junctions to eliminate the risk of going the wrong way. Room
labels follow orderly patterns so that reading a few can allow one to infer the locations of other
rooms. Such guidance is necessary in order to deal with the inherent uncertainty of navigation in
unseen environments.

Existing robot navigation systems lack the skills needed to leverage these resources and thus lose out
in navigation efficiency by spending unnecessary time exploring. We call these skills, which include
sign reading and asking for directions, higher-order navigation skills because they require higher-
order reasoning abilities and language processing. These skills become increasingly important in
larger environments, where exploring in the wrong direction can cost a massive amount of time.

Our key insight is that such higher-order navigation skills can be integrated in a unified manner
by taking advantage of recent advances in large vision-language models (VLMs). In this paper,
we present ReasonNav, a modular system for human-like navigation that leverages the zero-shot
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Figure 1: Higher-order navigation skills. Humans employ various skills involving higher-order
reasoning in order to navigate to their destinations efficiently. These skills take advantage of key
knowledge resources in the surrounding environment through high-level language and visual pro-
cessing. We present a navigation method that imbues robots with these skills by integrating them in
a VLM agent framework.

reasoning capabilities of a VLM in an agentic manner. The system is comprised of two streams:
a low-level stream that handles localization, mapping, and path planning, and a high-level stream
where the VLM performs high-level planning on abstracted observation and action spaces. Specif-
ically, we represent the environment using a memory bank of landmarks (e.g. map frontiers, doors,
people, signs) with attached textual information. This simplifies both the input and output spaces
for the VLM agent, allowing it to focus on higher-order reasoning.

We evaluate ReasonNav in real and simulated environments. In both cases, the robot is tasked with
finding a given room in a large (unseen) building. This mimics a practical indoor delivery scenario.
We show that our abstraction design allows the VLM to interpret information from signs and people
and use it to guide its decision-making. We compare our full system with ablated versions and
demonstrate that such higher-order navigation skills greatly impact navigation performance. Overall,
the results suggest that our VLM agent framework is a promising path forward for achieving human-
like navigation efficiency using higher-order reasoning skills.

2 Related Work

Agentic Foundation Models in Robotics. Task and motion planning (TAMP) approaches tra-
ditionally rely on predefined symbolic reasoning or optimization to plan for long-horizon tasks.
Previous works [1, 2, 3, 4] have leveraged large language models (LLMs) to decompose high-level
instructions into actionable subtasks, allowing for more user-friendly robotics systems. More re-
cent approaches utilize Vision-Language Models (VLMs) to ground reasoning for more general and
capable robot systems. VLMs have been shown to generalize across diverse objects and tasks in
table-top manipulation [5, 6, 7], and enable zero-shot navigation to semantic goals across different
environments [8, 9, 10]. Integrating these capabilities for mobile manipulation has seen improved
potential in recent works [11, 6, 12], which are divided into two main categories: 1. prompt-based
querying and 2. fine-tuning for direct perception to action pipeline. Our approach falls into the first
category, querying a VLM for high-level task planning and using modular out-of-the-box controllers
to execute actions. However, in contrast to the aforementioned methods that mainly rely on sensory
inputs to perceive the world, our methods can leverage other resources, such as asking humans for
help or actively seeking visual cues for navigation.
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Figure 2: Overview of ReasonNav. The system is comprised of a low-level stream and a high-
level stream. The low-level stream performs SLAM and object detection for key object categories
(doors, signs, and people), feeding into a global memory bank. The high-level stream consists of a
VLM planner that receives abstracted observations in the form of a JSON landmark dictionary and a
map visualization. The VLM outputs the next landmark to explore, upon which predefined behavior
primitives are executed based on the landmark category.

Open-world Navigation. In recent years, the rise in popularity of large-scale pre-trained foun-
dation models has witnessed the emergence of open-world navigation. Particularly, early works of
CLIP-on-Wheels (CoW) [13] and LM-Nav utilize CLIP [14] to establish a top-down confidence
map for language-guided object-goal navigation or to pre-compute a language-embedded topolog-
ical graph. Further works have expanded on this direction, using foundation models to pre-build
highly expressive language-embedded semantic maps for long-horizon and fine-grained navigation
tasks [15, 16, 17, 18, 19, 20, 21]. However, these approaches are computationally expensive, typi-
cally requiring multiple traversals over the operational area and hours of computing, and are unable
to operate in unknown environments. Recent works [8, 4, 22, 23, 24, 25, 26] address this short-
coming by adopting LLMs and VLMs’ high-level planners, taking advantage of their high-level
reasoning capabilities to relax the requirement of costly pre-built maps. Our method falls into this
category, enjoying the scalability and zero-shot transferability to the unknown world. However, we
focus on practical navigation in man-made environments and the unique skills needed to succeed in
such settings.

Interactive Navigation. Although these large foundation models have been trained on the vast
majority of internet data and have shown promising results for robotic tasks, solely relying on them
has proven to be inefficient. In recent years, the robotics community has been exploring human-in-
the-loop feedback for corrections during robot’s execution, especially for manipulation tasks [27,
28, 29, 30] and visual question answering tasks [31, 3, 32, 33]. Despite showing promising results,
these methods typically require immediate human feedback, which is often not possible in real-world
navigation scenarios. In contrast, our work mitigates this issue by leveraging more than just human
feedback as an additional source of information, utilizing wayfinding cues (room labels, navigation
signs, web searches) for more robust and efficient navigation.

3 Method

ReasonNav is a modular system for human-like navigation that heavily leverages the zero-shot rea-
soning capabilities of a Vision-Language Model (VLM) for efficient exploration in unseen buildings.
The system can be separated into a low-level stream and a high-level stream. The low-level stream
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includes standard localization and mapping modules that run at high frequency and an analytical
path planner (Appendix D.2). The high-level stream consists of a VLM agent that receives specially
abstracted scene information to mimic the conscious decision-making processes used by humans
during navigation (Sec. 3.1). The VLM chooses map frontiers to explore and decides when to per-
form skills such as sign reading, which are executed via predefined behavior primitives (Sec. 3.2).

3.1 VLM Observation and Action Abstraction

The key idea of our approach is to leverage VLMs in an agentic framework to integrate human-
like behaviors that greatly improve navigation efficiency. VLMs excel at understanding language
and conducting many forms of commonsense reasoning. However, they struggle at understanding
complex spatial data and directly producing precise numerical outputs [34, 35]. Thus, we need to
carefully design abstractions for both the input (observations) and output (actions) of the VLM in
order to effectively leverage its reasoning capabilities.

Landmarks. Our abstraction design is centered heavily on the concept of landmarks, which refer
to salient objects that are especially important in navigation tasks. Specifically, the landmarks refer
to objects of the three categories mentioned above: doors, people, and directional signs, along with
frontiers of the top-down map. Our system populates a memory bank of the objects from the output
of a detector and attaches additional navigation-relevant information to each one as various skills
are performed (see Fig. 2). For doors, we attach the text of the associated room label. For people,
we attach a summary (generated by the VLM) of the information received from them. For direc-
tional signs, we attach a list of cardinal directions and the sign text reading(s) associated with each
direction. All of the objects are attached to a label of “Visited” or “Unvisited”.

VLM Input and Output. We prompt the VLM with text instructions and two forms of abstracted
scene information. One is the memory bank of landmarks, including both objects and map frontiers,
in JSON format. Each landmark is assigned an index and may have additional information attached
as described above. The second form of information is an image visualization of the agent’s current
top-down map. The map is colored based on occupancy and explored areas, and for each landmark,
we plot its location on the map with a symbol of its category and its index number (see Fig. 1). This
gives a compact, high-level summary of the scene layout and the important objects the agent has
seen thus far. We prompt the VLM to use these two forms of information to decide which landmark
to visit next. This design ensures that the VLM can flexibly choose any reasonable high-level plan
while not being tasked with predicting precise numerical coordinates. The full prompt and detailed
examples of the reasoning process can be found in Appendix D.6.

3.2 Behavior Primitives

Each landmark category has an associated behavior primitive, which will be executed based on the
VLM’s choice. We describe each one below:

Frontier (Exploration). The agent moves to the desired frontier and turns 360-degrees to scan its
surroundings with Nav2’s point-goal planner and controller [36]. Frontier navigation enables us to
explore unvisited regions and identify more landmarks.

Door (Room Label Reading). The agent approaches the door and pans its camera while querying
the object detector for room label. If a room label is detected, the agent moves closer and reads
it via another call to the VLM. The text is attached to the door in the memory bank. If the goal is
found, the episode ends here.

Person (Asking for Directions). The agent approaches the person and asks for directions using
a text-to-speech model. It then records the person’s response using speech-to-text. Next, it calls
the VLM to produce a short note about the information it received, which is then attached to the
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microphone

How can I reach 4124?

4124 is to your left 

Note to self: "Since I am facing 
North, my right is East. To reach 

4124, turn left and go down the 
hallway heading West."

Ask & Update Direction

Update memory

Next Goal Selection: #4

Figure 3: Overview of the “Direction Asking” Skill: The agent identifies nearby humans and logs
them in its spatial memory (#3 in the map). When needed, it approaches and asks for goal directions
via text-to-speech. The human’s verbal response is transcribed and updated in memory, enabling
a more informed search towards the target (#4) that avoids unvisited areas (frontiers in #1 and #2)
unrelated to the goal and improves efficiency.

person’s landmark in the memory bank. Importantly, we request the VLM to use cardinal directions
in the global map frame instead of relative directions such as “left” or “right” so that the note can be
understood later without needing the agent’s pose from the time of recording (Fig. 3).

Directional Sign (Sign Reading). The agent approaches the sign and reads it via a call to the
VLM. The sign text is grouped based on arrow direction (binned into cardinal directions), and the
directions are transformed into the global map frame for recording (see Fig. 2 for example).

Individual prompts and further details for each type of VLM call can be found in Appendix D.6.

4 Experiments

We evaluate ReasonNav across a suite of real and simulated navigation tasks. We seek to answer the
following questions: 1). Can our VLM leverage higher-order skills to avoid wrong searches?, 2).
How does ReasonNav perform in unseen real-world navigation tasks?, 3). How do sign-reading and
human interactions impact navigation efficiency?, 4). How does map visualization input influence
the VLM’s spatial understanding? We answer these questions through a variety of qualitative and
quantitative analyses of the system’s performance in comparison to relevant baselines.

Task description. Our evaluation tasks are designed to mimic a realistic indoor delivery scenario.
The agent is placed in a large unknown building and is tasked with finding a target room specified
by a room number. The episode is considered successful if the target room label has been read by a
VLM call, within a 15-minute time limit.

Real-world environment. In the real-world, we consider two complex university campus multi-
purpose buildings, each over 80m in length. For most of the rooms, including the target room, there
is a room label next to each door to the room. Each building contains signs and people scattered
throughout. The human responses are open-ended, but are typically along the lines of “it’s the
second door down the hallway behind you.” We evaluate navigation performance over 12 total trials
in buildings A and B, each with different start and goal locations.

Simulation environment. We construct an environment in Isaac Sim simulation to enable repro-
ducible evaluation (Fig. 4). To the best of our knowledge, there is no existing simulation environment
suitable for evaluating higher-order navigation skills in realistic man-made scenes. We use existing
assets for an empty hospital and add room labels for each door, directional signs, and virtual hu-
mans who can provide directions via hard-coded conversational responses. We evaluate navigation
performance over 14 trials, each with different start and goal locations. We plan to release all the
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Figure 4: Hospital Environment Visualization. Existing open-world navigation benchmarks do
not support large-scale building navigation tasks with human interaction. To fill this gap, we in-
troduce an Isaac Sim-based interactive navigation benchmark in a photorealistic hospital with over
30 rooms (offices, operation, examination, and patient rooms). The environment features realistic
objects and layouts, informative signs, traversable rooms, and NPCs for human–robot interaction.
We also provide a queryable website with an online staff directory.

code and assets needed for evaluation in this environment to accelerate future research on practical
indoor navigation. More details are provided in Appendix B.

Baselines. To the best of our knowledge, there is no existing method available for navigating to
specific rooms within buildings, as the task inherently requires integrating text reading capabilities
into the navigation pipeline. Thus, we design baselines which can be thought of as ablations of
our method. To determine the impact of higher-order navigation skills on navigation efficiency, we
create a baseline in which signs and people are not processed into the landmark memory bank (No
Signs/Humans Feedback, Fig. 6). Thus, the VLM has no option to read signs or ask people for more
information—it only sees map frontiers and doors and decides which to visit. We also experiment
with removing the map image input to the VLM (No Landmark Map Input, Fig. 6). In this case, the
VLM only receives scene information via JSON text format.

Metrics. We measure success rate, average episode duration, and average distance traveled. A
success is counted when the robot reaches the goal and recognizes that it has completed the task
after reading the room number. For failed episodes (due to collisions or timeout after 15 minutes),
we assign a maximum duration of 900s and maximum distance traveled of 100m as a penalty.

4.1 Qualitative Results

We provide step-by-step episode visualizations of ReasonNav’s behavior in the real world in Fig. 5.
Note that in each example, there are landmarks in many different directions that the agent can choose
from. Choosing to explore in a direction that does not lead to the goal may result in wasting time
by exploring very long hallways. We observe that our VLM agent is able to successfully read signs,
interpret their directions with respect to the provided map, and use the information to pick frontiers
that directly lead to the goal. Similarly, the agent can ask people for directions, record the received
information in its memory bank, and use it effectively in subsequent high-level planning steps.

We compare our method with the aforementioned baselines qualitatively in Fig. 6. Removing the
map image input significantly hinders the VLM’s spatial reasoning capabilities, making it more
likely to misunderstand which doors are close to the agent and are worth visiting. This confirms that
modern VLMs are able to interpret top-down map images and use them for planning. On the other
hand, removing the ability to read signs and ask people for directions makes the agent more likely
to go in a completely wrong direction, causing failure due to timeout.
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Read sign, choose 10 Detect First Door Not target, check next doorHead to sign Reach target!

Room 4104 (Building A)

Ask Human for Direction Turn Left Following Instruction Detect doors, check first Head to human Reach target!

Room 1250 (Building B) 

Figure 5: Qualitative Results: We present full step-by-step episode visualizations of our framework
in two different real-world buildings. Thanks to its ability to reason over many sources of informa-
tion, ReasonNav can accurately and efficiently navigate to the specified room number. Blue lines
indicate the approximate traveled trajectories.

Ours - Success No Landmark Map Input - Failed No Signs/Humans Feedback - Failed

Figure 6: Qualitative comparison with baselines. We compare our method with ablative baselines
to validate our visual prompting design and the importance of sign reading and communicating with
humans. The visual map prompting enhances the spatial reasoning capabilities of the VLM, while
the sign reading and communication gathers important information for efficient navigation.

4.2 Quantitative Results

We report quantitative results in both real-world and simulation environments (Tables 1 and 2).
The results reveal several key insights. First, higher-order navigation skills—reading signs and
asking people for directions—are critical: without these skills, the agent succeeds in only 8.3%
of real-world trials and 42.86% of simulation trials. Second, omitting our unified spatial memory
map as image prompts significantly degrades performance, underscoring its importance for decision
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making. In real-world experiments, baselines without skills or map prompting frequently exhaust
their time budgets, illustrating that missing high-level cues leads to timeout failures. By combining
sign-reading, direction-asking, and spatial-map integration, our approach outperforms both the “No
Signs/People” and “No Map Image” baselines by over 40 percentage points—achieving 58.3% in
real-world trials and 57.14% in simulation.

Table 1: Quantitative Results for Navigation in Real-World Environments (Academic Complexes)

Success Rate (%) Avg Duration (s) Distance Traveled (m)
Environment Build A Build B Build A Build B Build A Build B Avg. (%)
No Signs/People 10 0 817.00 900 90.48 100 8.3
No Map Image 20 0 679.72 900 73.52 100 16.6
Ours 50 100 572.35 232.63 60.28 12.61 58.3

Table 2: Quantitative Results for Navigation in Simulation Environments (Large Hospital)

Environment Success Rate (%) Duration (s) Distance Traveled (m)
No Signs/People 42.86 710.76 75.56
No Map Image 14.29 860.72 123.95
Ours 57.14 608.99 72.53

4.3 Failure Analysis

We provide an in-depth failure analysis of our method for both simulation and real-world scenarios in
Table 3. Since failures in long-horizon navigation typically stem from multiple factors per episode,
we include an analysis of the top 3 contributing causes for each failure. For failure cases with less
than 3 contributing factors, all the factors are counted.

Table 3: Frequency of causes identified in top-3 failure reasons per episode.

Failure Cause Real Percentage Sim. Percentage

Incorrect Detection 33.33 21.43
Detection Missed 26.67 21.43
Reasoning Failure 20.00 7.14
Incorrect Human Info 13.33 0.00
SLAM Failure 6.67 14.29
Planner/Controller Failure 0.00 28.57

In the real world, the detection module causes the most failures. Posters are often detected as
directional signs or room labels, causing the robot to waste time reading them. In simulation, low-
level navigation issues from the Nav2 module are most prevalent, especially where narrow hallways
and obstacles make it difficult to plan paths, slowing the robot. In summary, improving low-level
perception and planning performance are still important directions for future work.

5 Conclusion

We presented ReasonNav, a novel method for robot navigation that incorporates human-like naviga-
tion skills, such as sign reading and asking for directions, in an agentic VLM framework. ReasonNav
abstracts low-level perceptual inputs into a memory bank of landmarks and uses a VLM to perform
higher-order reasoning on these landmarks and plan high-level actions. We conduct experiments to
validate the capabilities of the agent and show that higher-order navigation skills are important for
efficient navigation in large buildings.
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6 Limitations

ReasonNav successfully exhibits human-like navigation behaviors based on higher-order reasoning.
However, since the system relies on an object detector to produce landmarks, the overall perfor-
mance is bottlenecked by the detection performance. In addition, since the objects are limited to
a predefined set of categories and the VLM only observes landmarks, the high-level planning does
not maximally use the information contained in the camera observations. In the future, as detection
capabilities become better integrated into VLMs themselves, the specialized detector could be re-
placed by a more powerful VLM-based detection stream. Lastly, because the VLM is restricted to
exploring frontiers, it is not able to choose closer waypoints which may be sufficient for exploring
an area while taking less time to reach. This could be mitigated by incorporating more sophisticated
re-planning logic.
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A Additional Experiments

We provide additional comparisons to other ablative baselines to validate the usefulness of VLM
reasoning and the JSON landmark memory bank (Table 4). We tested on the same 14 simulation
experiments as Table 2. For “No VLM,” we tested two heuristics: closest and random unvisited
landmark selection. For “No JSON,” we removed the JSON landmark memory bank, leaving the
landmark map as the only input to the VLM with scene information. We remark that since the JSON
serves as the memory keeping track of (un)visited landmarks, this baseline keeps choosing visited
landmarks, leading to time-out.

Table 4: Additional Ablations for Navigation in Simulation Environments (Large Hospital)

Environment Success Rate
No VLM (closest) 35.71
No VLM (random) 28.57
No JSON 0
Ours 57.14

B Simulation Environment Details

Our simulation experiments were conducted using Isaac Sim with customized robot and environment
assets. The robot is controlled via ROS 2 with the same topics/interfaces as the real-world robot to
ensure easier sim-to-real transfer.

Simulated Robot Setup Our simulation robot asset starts with a URDF exported from Fusion
360 CAD. The core sensors and actuators, including base control, pan-tilt, and sensor data (RGB-D
camera, 3D LiDAR, and 2D LiDAR), are then simulated using Isaac Sim action graphs. Coordinate
frames/topics are also aligned with the real-world robot system.

Simulated Environment Setup We modify one of the provided Isaac Sim hospital environments
to include room numbers, signs, and 11 human NPCs for our task.

We divided the hospital into several functional zones: consultation, support, examination, reception,
waiting, stairs, and public service areas. Each room within these zones was assigned a unique room
number ranging from 3001 to 3041. Four prominent directional signs were placed at key locations
to indicate the relative directions of room number ranges in each zone. The NPCs are arranged
realistically in the scene as shown in Fig. 7.

NPC Information To make the robot’s interaction with the environment more realistic, we clas-
sified NPCs into three types—doctors, nurses, and patients—each with its own ‘knowledge base.’
Doctors know the exact locations of all doctors and approximate orientations of each functional
zone. They can also answer medical questions and schedule consultations. Nurses know the exact
locations of all doctors and all functional zones. They can also help with patient registration, check
appointment times, and provide detailed directions to specific rooms. Patients know the approx-
imate directions to the public service and waiting areas. Furthermore, NPCs provide hard-coded
relative directions when asked (e.g., “The room is on your left”). Each NPC has a different set of
rooms that they know the directions to. If the NPC does not have information regarding the user’s
inquiry, they will reply with some version of “Sorry, I don’t know the answer to that question.”
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Figure 7: Door Numbering, Signs and NPC Placement in Hospital Environment. Blue dots
represent doctors, orange are patients, and green are nurses. Red rectangles represent signs.

C Real-World Environment Details

We conducted 10 experiments in building A and 2 in building B for a total of 12 real-world experi-
ments. In each of those experiments, one to two human actors were stationed at a fixed location to
provide open-ended relative directions if asked. Non-actor humans will occasionally pass by.

D ReasonNav Implementation Details

D.1 Robot Hardware Setup

Our robot is custom-built and consists of a mobile base, an arm, a computer, and various sensors.
Components are attached to the base using aluminum t-slots and 3D-printed mounts. See Fig. 8.

We use the AgileX Ranger Mini 2.0, a mobile platform with 4-wheel steering and an onboard power
supply that allows for omnidirectional motion in flat indoor and outdoor spaces. The 7-DoF UFAC-
TORY xArm7 robot arm (currently unused) is mounted at a height ideal for manipulation on ta-
bles/door handles in the real world. For obstacle avoidance and mapping, there is a Slamtech 2D
LiDAR mounted near the base and a Hesai FT120 solid-state 3D LiDAR mounted on top. Two
Realsense D455’s are mounted on top for perception, one on a pan-tilt mechanism and the other
angled downward toward the robot workspace. Only the pan-tilt camera is used in this work, and
it is only used for object detection and text reading, not mapping. The height of the camera is
roughly aligned with most indoor signs, and the pan-tilt capability allows for viewing the surround-
ings quickly without turning the entire robot. For interacting with humans, we use a Respeaker
omnidirectional microphone, mounted near the top for conversation with humans. An Ardusimple
simpleRTK3B GPS is also mounted but is unused in this work.
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Figure 8: Hardware System Overview.

Our onboard compute comes from a Lenovo Legion 5i laptop with an NVIDIA 4070 GPU. Using an
x86 laptop rather than an embedded ARM device like a Jetson allows for easier software setup and
debugging. The entire system is integrated using ROS2 Humble and Docker, with all sensors/robot
interfaces connected to the laptop. The laptop is connected to the internet in order to query GPT 4.1
via its API.

Overall, the system costs ∼$35k. We plan on open-sourcing the entire CAD and hardware setup
documentation in the future as well.

D.2 Localization and Mapping

We first describe our system’s low-level processing stream, which is responsible for producing a
top-down map of the environment, localizing the agent with respect to the map, detecting certain
objects, and path planning. We perform 2D simultaneous localization and mapping (SLAM) using
SLAM Toolbox [37] which merges the 3D lidar scan into the 2D scan and performs optimization
to produce a top-down occupancy map of areas the agent has explored. Concurrently, we perform
object detection on images from the RealSense camera using an open-vocabulary detector without
retraining. We use NanoOWL, an optimized implementation of OWL-ViT [38], and query with
three text labels: door, person, and directions sign. We use a variety of heuristics to filter the
detections and extract the 3D position and approach orientation for each detection (see supplemen-
tary for details). For path planning, we use NavFn, a wavefront Dijkstra planner from Nav2 [36],
and execute the paths using an MPPI [39] controller.
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D.3 Object Detection Details

The detection runs on a 15 FPS stream of 1280×720 RGB-D images from the RealSense camera. In
the real-world, additional filtering is performed based on bounding box corners unprojected to 3D.
For doors, the NanoOWL confidence threshold is 0.3, and we only keep detections with box widths
in the range (0.5, 2.5) and heights in the range (0.5, 3). For room labels, the confidence threshold
is 0.04, and the width range is (0, 0.4) and the height range is (0, 0.15). For directional signs, the
confidence threshold is 0.03, and the width range is (0.35, 0.5) and the height range is (0.2, 0.5).
For people, the confidence threshold is 0.3 and we do not do any other filtering. The unprojected
box center is taken as the 3D position of each object, and the approach orientation is acquired by
taking the cross product of vectors from the center to unprojected points 20 pixels to the left and
below. For each incoming frame, the filtered detections are greedily matched with existing objects
based on center distance and aggregated if the distance is within 1m. Only the objects with 3 or
more detections within the last 20 frames are added to the memory bank.

D.4 Frontier Extraction Details

Following VLFM [40], we compute frontiers as the midpoints of boundary segments separating ex-
plored and unexplored regions. First, a contour of the explored region is extracted using OpenCV’s
findContours function. The contour is broken into contiguous obstacle-free segments using a di-
lated obstacle map, and the midpoints are computed by traversing the path along each segment and
accumulating the distance.

D.5 Human Interaction Details

We specify three types of human interaction: 1). getting instructions, 2). asking for directions, and
3). asking for directory information (e.g. what room Prof. Shenlong’s office is in).

The first case happens at startup if a task is not yet specified. The robot will ask “Hi, I am a delivery
robot! How can I help you?” and wait for a response from the human. This response will then be
passed into a VLM call to retrieve the goal in a specific format for parsing.

The second and third cases occur when the VLM planner chooses a human landmark. When asking
for directions, the robot will say “”Hi, I am a delivery robot! Do you know where {goal} is?”. Here,
directions are assumed to be given relative to the robot. After receiving the response, a VLM will be
called to write a note to a future self on how to reach the goal using cardinal directions specified by
the landmark map. This will be added to the JSON memory bank under the human landmark. When
human responses are unclear (e.g. no response or a response that is not relevant), the corresponding
field will mention that there is no information gained. Our system does not reason about which
human has more information.

For getting directory info, the robot will ask “Hi, I am a delivery robot! Do you know which room
# {goal} is in?” The response will be processed by a VLM and the navigation goal will be updated
accordingly.

All of these interactions require human detection to initiate. Our current pipeline does not explicitly
handle dynamic actors. If the VLM-selected human walks away, it will receive no response and thus
gain no info. Robustly handling dynamic actors is left as an extension for future work.

D.6 VLM Prompts

We provide the exact prompts for the various VLM calls we make in our framework: 1). Choosing
the next landmark to visit given a top-down map image and JSON memory bank, 2). Reading the
room number of a door given a real-world image, 3). Reading a directional sign given a real-world
image, 4). Deciding which type of human interaction should occur, and 5). Recording a note given
the speech-to-text transcription of a human interaction. All of them use the same system prompt.
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System Prompt

You are ChatGPT, a large language model trained by OpenAI. Follow the user’s
instructions carefully. Respond concisely, informatively, and helpfully. If you’re
unsure about an answer, say so. You have strong reasoning capabilities.

1). Choose Next Landmark Prompt

You are a robot ( ) trying to find {target}.

The map depicts the environment you’ve explored so far with doors ( ), signs
( ), people ( ), and frontiers ( ). The map is North up, and the borders are
labeled with cardinal directions N, S, E, W.
The JSON provided below maps each landmark index on the map to its name
and, if applicable, directions (from signs) and info (from people).

Choose the next landmark to go to based on the provided map and JSON.
Reason over how to most **efficiently** find the target, like going to directions
signs to narrow down regions, following ascending/descending door number
patterns, visiting nearest doors to see their room number, asking a person nearby
for directions, or exploring frontiers to find more landmarks.

Visited doors are named in the format ”Visited a door X”, where X is the room
number. Use these room numbers to identify door numbering patterns.
Follow patterns efficiently. For example, in ascending patterns, if you are at door
100 and looking for door 110, skip doors 101, 102, etc.

Keep in mind that all information from signs, people, etc. are relative to the
position of that particular landmark, and is probably only applicable in a local
region of that landmark.

If an unvisited person is nearby and you want to ask for more information on
where to go, choose the person. Information provided by a visited person will be
listed in ’info’ using cardinal directions. Use this information.
Example:

Input: target=’Room 3339’, info=”I should go North to find the door”
Output: You will pick a landmark to the north of the image.

If directions are available in the json, follow those directions. This will take prece-
dence over looking for things nearby. Make sure your range is correct.
Example:

Input: target=’Room 3339’, directions=’North’:[’Room 3326-3340’], ’North-
East’:[], ’East’:[], ’South-East’:[], ’South’:[’Room 3101-3307’], ’South-West’:[],
’West’:[], ’North-West’:[]

Output: You will pick a landmark to the north of the image because 3339 is in
the range 3326-3340.
**Do not choose landmarks that are already visited (i.e. names that look like
”Visited obj id”**.

First, think carefully step by step about where the target room might be
and decide which landmark to visit next. Then, print out your reasoning followed
by the chosen landmark index in brackets.
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Example: I am looking for Room 110. The directions from the sign say room
100-120 are south. Landmark 3 is an unvisited door to the south, so it might be
the target; Chosen landmark: [3]
JSON:
{vlm keypt dict}

2). Read Door Label Prompt

What is the door number in the image? Return only the number and confidence
score (to 2 decimal places), separated by a semicolon.
If you can’t see a sign or you can only read half of the sign, return -1; confidence
score.
If you can see the sign but you can’t read the numbers, return -2; confidence score.
Your confidence score should be between 0 and 1. Be more conservative with
your estimates.

3). Read Directional Sign Prompt

Break down the directions sign you see in the image.
Return your answer in the form {’left’: [content], ’right’: [content], ’forward’:
[content], ’backwards’: [content]}. Return only the dict (no comments or format-
ting).

4). Choose Human Interaction Type Prompt

You are a delivery robot the current goal: {goal}.
Given the information you have learned: {learned info}, what do you want to ask
the person in front of you?
Pick the response that makes the most sense from the following 3 choices.
Return the number and only the number.
1. ”How can I help you?” (This is used to get a goal, only use if the current goal
is None)
2. ”Do you know where {goal} is?” (This is used to ask for directions)
3. ”Do you know which room # {goal} is in?” (This is used to get directory
information)

5). Record Conversation Information Prompt

You are a robot ( ) trying to find {goal}. You are facing {robot facing}. Given
the map and the directions by Person, write a short note for your future self to
refer to later on how to reach your goal.
Return only the output in the format ”Note: note to self”. Do not include quota-
tions.
The image is already aligned with relative directions, so left means left on the
image. In your note to self, use the cardinal directions in the map.
Also ignore the numbers above each landmark as they will be updated.
Conversation: {conversation history}

E Additional Visualizations

Simulation Example We present a step-by-step qualitative result for our simulation environment
in Fig. 9, with more examples in the supplemental video.
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Figure 9: Qualitative Simulation Results: We present full step-by-step episode visualizations of
our framework in simulation with exact path traveled highlighted in red.

Step-by-step VLM reasoning example We further showcase ReasonNav’s reasoning capabilities
in a step-by-step example in Fig. 10. Given the landmark map (on the left), the VLM is prompted
to choose a waypoint for the robot to follow. The text boxes (on the right) represent the VLM’s
reasoning and decisions. Please refer to the video for more examples.

F Extension to Multi-Floor Scenarios

We show ReasonNav can also work with multiple floors through the elevator demo shown in the
supplementary video at the 2:00 timestamp. We choose a goal room on the fourth floor and initialize
the robot with the information that it is currently on the third floor and can take elevators. We add
elevators and elevator button panels to our detection module as well, and design a simple behavior
primitive to take the elevator. When the VLM chooses to go to the elevator, we detect the button
panel and use our onboard robot arm to push the up button. After the button is pressed, the robot
moves to face the door and uses the center depth values from the pan-tilt camera to sense when the
elevator door has opened based on a threshold. The robot then moves forward and asks a human
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I am looking for Room 4104. There are two unvisited doors on the map (13 and 14), 
but I have no information about their room numbers. There's also a directions sign at 
landmark 12, which may provide valuable information about where room 4104 or its 
range might be.

The most efficient move is to visit the directions sign first to get directional information 
on room numbers, which could help me quickly narrow down where Room 4104 is 
located.

Chosen landmark: [12]

Room 4104 is my target. The directions sign at landmark 7 indicates that "ROOMS 
4104-4130" are to the "North-West". There are no visited doors in that direction yet. 
Among the available options, frontier 1 (landmark 1) is in the northwest direction and is 
closest to the sign's indication.

Therefore, the next most efficient move is to continue exploring northwest by visiting 
the frontier in that direction.

Chosen landmark: [1]

I am looking for Room 4104. According to the directions from the sign (landmark 8), 
"ROOMS 4104-4130" are to the North-West. This is the most promising lead since 
Room 4104 falls within this range. The nearest frontier in the North-West direction is 
landmark 7, which will help me explore the correct region efficiently.

Chosen landmark: [7]

I am looking for Room 4104. The directions from the sign at landmark 12 indicate that 
"ROOMS 4104-4130" are to the North-West. Since this is a tight range that includes 
the target room, I should head to the North-West to look for door 4104, skipping 
landmarks that are not in that direction.

There are unvisited doors to the north-west at landmark 16, and frontiers at 11. 
Landmark 16 is the closest unvisited door in the correct direction.

Reasoning: Based on the directions from the sign and efficient search for Room 4104, I 
should check the nearest unvisited door to the North-West, which may be the target or 
nearby.

Chosen landmark: [16]

Figure 10: Real-world VLM reasoning: We present a step-by-step example of VLM’s reasoning
and decisions to navigate to room 4104. ReasonNav exhibits spatial reasoning capabilities given the
direction guidance from direction signs, as showcased in the third and fourth rows.

(assuming someone can help push the interior buttons) to push the button to go to the fourth floor.
Using the pan-tilt camera facing backwards, the robot once again waits till the elevator door has
opened before backing out. The SLAM and landmark maps get reset and the robot continues to
search for the door as usual on the new floor.
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